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Abstract 

Deep learning analysis of radiological images has the potential to improve diagnostic accuracy of breast cancer, 
ultimately leading to better patient outcomes. This paper systematically reviewed the current literature on deep 
learning detection of breast cancer based on magnetic resonance imaging (MRI). The literature search was performed 
from 2015 to Dec 31, 2022, using Pubmed. Other database included Semantic Scholar, ACM Digital Library, Google 
search, Google Scholar, and pre-print depositories (such as Research Square). Articles that were not deep learning 
(such as texture analysis) were excluded. PRISMA guidelines for reporting were used. We analyzed different deep 
learning algorithms, methods of analysis, experimental design, MRI image types, types of ground truths, sample sizes, 
numbers of benign and malignant lesions, and performance in the literature. We discussed lessons learned, chal-
lenges to broad deployment in clinical practice and suggested future research directions.
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Background
Breast cancer is the most common cancer and the second 
leading cause of cancer death in women. One in eight 
American women (13%) will be diagnosed with breast 
cancer in their lifetime, and one in 39 women (3%) will 
die from breast cancer (American Cancer Society Statis-
tics, 2023). The American Cancer Society recommends 
yearly screening mammography for early detection of 
breast cancer for women, which may begin at age 40 [1]. 
About 2%–5% of women in the general population in the 
US have a lifetime risk of breast cancer of 20% or higher 
[1], although it can vary depending on the population 

being studied and the risk assessment method used. The 
ACS recommends yearly breast magnetic resonance 
imaging (MRI) in addition to mammography for women 
with 20–25% or greater lifetime risk [1]. Early detec-
tion and treatment are likely to result in better patient 
outcomes.

MRI is generally more sensitive and offers more 
detailed pathophysiological information but is less cost 
effective compared to mammography for population-
based screening [2, 3]. Breast MRI utilizes high-powered 
magnets and radio waves to generate 3D images. Can-
cer yield from MRI alone averages 22 cancers for every 
1000 women screened, a rate of cancer detection roughly 
10 times that achieved with screening mammography in 
average-risk women, and roughly twice the yield achieved 
with screening mammography in high-risk women [4]. 
Many recent studies have established contrast-enhanced 
breast MRI as a screening modality for women with a 
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hereditary or familial increased risk for the development 
of breast cancer [5].

Interpretation of breast cancer on MRI relies on the 
expertise of radiologists. The growing demand for breast 
MRI and the shortage of radiologists has resulted in 
increased workload for radiologists [6, 7], leading to 
long wait times and delays in diagnosis [8, 9]. Machine 
learning methods show promise in assisting radiologists, 
in improving accuracy with the interpretation of breast 
MRI images and supporting clinical decision-making 
and improving patient outcomes [10, 11]. By analyzing 
large datasets of MRIs, machine learning algorithms can 
learn to identify and classify suspicious areas, potentially 
reducing the number of false positives and false nega-
tives [11, 12] and thus improving diagnostic accuracy. 
A few studies have shown that machine learning can 
outperform radiologists in detecting breast cancer on 
MRIs [13]. Machine learning could also help to prioritize 
worklists in a radiology department.

In recent years, deep learning (DL) methods have revo-
lutionized the field of computer vision with wide range of 
applications, from image classification and object detec-
tion to semantic segmentation and medical image analy-
sis [14]. Deep learning is superior to traditional machine 
learning because of its ability to learn from unstructured 
or unlabeled data [14]. Unlike traditional machine algo-
rithms which require time-consuming data labeling, deep 
learning algorithms are more flexible and adaptable as 
they can learn from data that are not labeled or struc-
tured [15]. There have been a few reviews on deep learn-
ing breast cancer detection. Oza et al. reviewed detection 
and classification on mammography [16]. Saba et al. [17] 
presented a compendium of state-of-the-art techniques 
for diagnosing breast cancers and other cancers. Hu 

et al. [18] provided a broad overview on the research and 
development of artificial intelligence systems for clini-
cal breast cancer image analysis, discussing the clinical 
role of artificial intelligence in risk assessment, detection, 
diagnosis, prognosis, and treatment response assess-
ment. Mahoro et  al. [10] reviewed the applications of 
deep learning to breast cancer diagnosis across multiple 
imaging modalities. Sechopoulos et al. [19] discussed the 
advances of AI in the realm of mammography and digi-
tal tomosynthesis. AI-based workflows integrating mul-
tiple datastreams, including breast imaging, can support 
clinical decision-making and help facilitate personalized 
medicine [20]. To our knowledge, there is currently no 
review that systematically compares different deep learn-
ing studies of breast cancer detection using MRI. Such 
a review would be important because it could help to 
delineate the path forward.

Figure  1 shows a graphic representation of a deep 
learning workflow. The input layer represents the breast 
cancer image that serves as input to the CNN. The mul-
tiple convolutional layers are stacked on top of the input 
layer. Each convolutional layer applies filters or kernels 
to extract specific features from the input image. These 
filters learn to detect patterns such as edges, textures, 
or other relevant features related to breast cancer. After 
each convolutional layer, activation functions like recti-
fied linear unit (ReLU) are typically applied to introduce 
nonlinearity into the network. Following some of the 
convolutional layers, pooling layers are used to down-
sample the spatial dimensions of the feature maps. Com-
mon pooling techniques include max-pooling or average 
pooling. Pooling helps reduce the computational com-
plexity and extract the most salient features. After the 
convolutional and pooling layers, fully connected layers 

Fig. 1  The input layer represents the breast cancer image that serves as input to the CNN. The multiple convolutional layers are stacked on top 
of the input layer. Pooling layers are used to downsample the spatial dimensions of the feature maps. Fully connected layers are then employed 
to connect all the neurons from the previous layers to the subsequent layers. The final layer is the output layer, which provides the classification
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are employed. These layers connect all the neurons from 
the previous layers to the subsequent layers. Fully con-
nected layers enable the network to learn complex rela-
tionships between features. The final layer is the output 
layer, which provides the classification or prediction. In 
the case of breast cancer detection, it might output the 
probability or prediction of malignancy or benignity.

The goal of this study was to review the current liter-
ature on deep learning detection of breast cancer using 
breast MRI. We included literature in which DL was used 
for both primary screening setting and as a supplemen-
tal detection tool. We compared different deep learning 
algorithms, methods of analysis, types of ground truths, 
sample size, numbers of benign and malignant lesions, 
MRI image types, and performance indices, among oth-
ers. We also discussed lessons learned, challenges of 
deployment in clinical practice and suggested future 
research directions.

Materials and methods
No ethics committee approval was required for this 
review.

Search strategy and eligibility criteria
PRISMA guidelines for reporting were adopted in our 
systematic review. The literature search was performed 
from 2017 to Dec 31, 2022, using the following key words: 
“breast MRI,” “breast magnetic resonance imaging,” “deep 
learning,” “breast cancer detection,” and “breast cancer 

screening.” The database included Pubmed, Semantic 
Scholar, ACM Digital Library, Google search, Google 
Scholar, and pre-print depositories (such as Research 
Square). We noted that many of the computing or 
machine learning journals were found on sites other than 
Pubmed. Some were full-length peer-reviewed confer-
ence papers, in contrast with small conference abstracts. 
Articles that were not deep learning (such as texture 
analysis) were excluded. Only original articles written in 
English were selected. Figure 2 shows the flowchart dem-
onstrating how articles were included and excluded for 
our review. The search and initial screening for eligibil-
ity were performed by RA and independently verified by 
KD and/or TD. This study did not review DL prediction 
of neoadjuvant chemotherapy which has recently been 
reviewed [21].

Results
Pubmed search yielded 59 articles, of which 22 were 
review articles, 30 were not related to breast cancer 
detection on MRI, and two had unclear/unconventional 
methodologies. Five articles were found in Pubmed 
search after exclusion (Fig.  2). In addition, 13 articles 
were found on different databases outside of Pubmed, 
because many computing and machine learning journals 
were not indexed by Pubmed. A total of 18 articles were 
included in our study (Table 1). Two of the studies stated 
that the patient populations were moderate/high risk [22, 
23] or high risk [23], while the remaining papers do not 

Fig. 2  PRISMA selection flowchart
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state whether the dataset was from screening or supple-
mental MRI.

In this review, we first summarized individual papers 
and followed by generalization of lessons learned. We 
then discussed challenges of deployment in the clinics 
and suggested future research directions.

Summary of individual papers
Adachi et al. [13] performed a retrospective study using 
RetinaNet as a CNN architecture to analyze and detect 
breast cancer in MIPs of DCE fat-suppressed MRI 
images. Images of breast lesions were annotated with 
a rectangular region-of-interest (ROI) and labeled as 
“benign” or “malignant” by an experienced breast radi-
ologist. The AUCs, sensitivities, and specificities of four 
readers were also evaluated as well as those of readers 
combined with CNN. RetinaNet alone had a higher area 
under the curve (AUC) and sensitivity (0.925 and 0.926, 
respectively) than any of the readers.  In two cases, the 
AI system misdiagnosed normal breast as malignancy, 
which may be the result of variations in normal breast 
tissue. Invasive ductal carcinoma near the axilla was 
missed by AI, possibly due to confusion for normal axil-
lary lymph node. Wider variety of data and larger data-
sets for training could alleviate these problems.

Antropova et al. [24] compared MIP derived from the 
second post-contrast subtraction T1-weighted image to 
the central slice of the second post-contrast image with 
and without subtraction. The ground truth was ROIs 
based on radiology assessment with biopsy-proven malig-
nancy. MIP images showed the highest AUC. Feature 
extraction and classifier training for each slice for DCE-
MRI sequences, with slices in the hundreds, would have 
been computationally expensive at the time. MIP images, 
in widespread use clinically, contain enhancement infor-
mation throughout the tumor volume. MIP images, 
which represent a volume data, avoid using a plethora of 
slices, and are, therefore, faster and computationally less 
intensive and less expensive. MIP (AUC = 0.88) outper-
formed one-slice DCE image, and subtracted DCE image 
(AUC = 0.83) outperformed single-slice DCE image 
(AUC = 0.80). The subtracted DCE image is derived from 
2 timepoints, the pre-contrast image subtracted from 
the post-contrast image, which produces a higher AUC. 
Using multiple slices and/or multiple timepoints could 
further increase the AUC with DCE images, possibly 
even exceeding that of the MIP image (0.88). This would 
be an area for further exploration.

Ayatollahi et  al. [22] performed a retrospective study 
using 3D RetinaNet as a CNN architecture to analyze 
and detect breast cancer in ultrafast TWIST DCE-MRI 
images. They used 572 images (365 malignant and 207 
benign) taken from 462 patients. Bounding boxes drawn 

around the lesion in the images were used as ground 
truth. They found a detection rate of 0.90 and a sensitiv-
ity of 0.95 with tenfold cross validation.

Feng et  al. [23] implemented the Knowledge-Driven 
Feature Learning and Integration model (KFLI) using 
DWI and DCE-MRI data from 100 high-risk female 
patients with 32 benign and 68 malignant lesions, seg-
mented by two experienced radiologists. They reported 
0.85 accuracy. The model formulated a sequence division 
module and adaptive weighting module. The sequence 
division module based on lesion characteristics is pro-
posed for feature learning, and the adaptive weight-
ing module proposed is used for automatic feature 
integration while improving the performance of coop-
erative diagnosis. This model provides the contribution 
of sub-sequences and guides the radiologists to focus on 
characteristic-related sequences with high contribution 
to lesion diagnosis. This can save time for the radiologists 
and helps them to better understand the output results of 
the deep networks. As such, it can extract sufficient and 
effective features from each sub-sequence for a compre-
hensive diagnosis of breast cancer. This model is a deep 
network and domain knowledge ensemble that achieved 
high sensitivity, specificity, and accuracy.

Fujioka et  al. [25] used 3D MIP projection from early 
phase (1–2 min) of dynamic contrast-enhanced axial fat-
suppressed DCE mages, with performance of CNN mod-
els compared to two human readers (Reader 1 = breast 
surgeon with 5 years of experience and Reader 2 = radiol-
ogist with 20 years of experience) in distinguishing benign 
from malignant lesions. The highest AUC achieved with 
deep learning was with InceptionResNetV2 CNN model, 
at 0.895. Mean AUC across the different CNN models 
was 0.830, and range was 0.750–0.895, performing com-
parably to human readers. False-positive masses tended 
to be relatively large with fast pattern of strong enhance-
ment, and false-negative masses tended to be relatively 
small with medium to slow pattern of enhancement. 
One false positive and one false negative for non-mass 
enhancing lesion that was observed were also incorrectly 
diagnosed by the human readers. The main limitation of 
their study was small sample size.

Haarburger et  al. [26] performed an analysis of 3D 
whole-volume images on a larger cohort (N = 408 
patients), yielding an AUC of up to 0.89 and accuracy 
of 0.81, further establishing the feasibility of using 3D 
DCE whole images. Their method involved feeding DCE 
images from 5 timepoints (before contrast and 4 times 
post-contrast) and T2-weighted images to the algorithms. 
The multicurriculum ensemble consisted of a 3D CNN 
that generates feature maps and a classification com-
ponent that performs classification based on the aggre-
gated feature maps made by the previous components. 
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AUC range of 0.50–0.89 was produced depending on 
the CNN models used. Multiscale curriculum training 
improved simple 3D ResNet18 from an AUC of 0.50 to 
an AUC of 0.89 (ResNet18 curriculum). A radiologist 
with 2  years of experience demonstrated AUC of 0.93 
and accuracy of 0.93. An advantage of the multicurricu-
lum ensemble is the elimination of the need for pixelwise 
segmentation for individual lesions, as only coarse locali-
zation coordinates for Stage 1 training (performed in 3D 
in this case) and one global label per breast for Stage 2 
training is needed, where Stage 2 involved predictions of 
whole images in 3D in this study. The high performance 
of this model can be attributed to the high amount of 
context and global information provided. Their 3D data 
use whole breast volumes without time-consuming and 
cost prohibitive lesion segmentation. A major drawback 
of 3D images is the requirement of more RAM and many 
patients required to train the model.

Herent et  al. [27] used T1-weighted fat-suppressed 
post-contrast MRI in a CNN model that detected and 
then characterized lesions (N = 335). Lesion characteri-
zation consisted of diagnosing malignancy and lesion 
classification. Their model, therefore, performed three 
tasks and thereby was a multitask technique, which limits 
overfitting. ResNET50 neural network performed feature 
extraction from images, and images were processed by 
the algorithm’s attention block which learned to detect 
abnormalities. Images were fed into a second branch 
where features were averaged over the selected regions, 
then fitted to a logistic regression to produce the output. 
On an independent test set of 168 images, a weighted 
mean AUC of 0.816 was achieved. The training dataset 
consisted of 17 different histopathologies, of which most 
were represented as very small percentages of the whole 
dataset of 335. Several of the listed lesion types repre-
sented less than 1% of the training dataset. This leads 
to the problem of overfitting. The authors mention that 
validation of the algorithm by applying it to 3D images in 
an independent dataset, rather than using the single 2D 
images as they did, would show if the model is generaliz-
able. The authors state that training on larger databases 
and with multiparametric MRI would likely increase 
accuracy. This study shows good performance of a super-
vised attention model with deep learning for breast MRI.

Hu et al. [28] used multiparametric MR images (DCE-
MRI sequence and a T2-weighted MRI sequence) in 
a CNN model including 616 patients with 927 unique 
breast lesions, 728 of which were malignant. A pre-
trained CNN extracted features from both DCE and 
T2w sequences depicting lesions that were classified as 
benign or malignant by support vector machine classi-
fiers. Sequences were integrated at different levels using 
image fusion, feature fusion, and classifier fusion. Feature 

fusion from multiparametric sequences outperformed 
DCE-MRI alone. The feature fusion model had an AUC 
of 0.87, sensitivity of 0.78, and specificity of 0.79. CNN 
models that used separate T2w and DCE images into 
combined RBG images or aggregates of the probability 
of malignancy output from DCE and T2w classifiers both 
did not perform significantly better than the CNN model 
using DCE-alone. Although other studies have demon-
strated that single-sequence MRI is sufficient for high 
CNN performance, this study demonstrates that mul-
tiparametric MRI (as fusion of features from DCE-MRI 
and T2-weighted MRI) offers enough information to out-
perform single-sequence MRI.

Li et al. [29] used 3D CNNs in DCE-MR images to dif-
ferentiate between benign and malignant tumors from 
143 patients. In 2D and 3D DCE-MRI, a region-of-inter-
est (ROI) and volume-of-interest (VOI) were segmented, 
and enhancement ratios for each MR series were cal-
culated. The AUC value of 0.801 for the 3D CNN was 
higher than the value of 0.739 for 2D CNN. Furthermore, 
the 3D CNN achieved higher accuracy, sensitivity, and 
specificity values of 0.781, 0.744, and 0.823, respectively. 
The DCE-MRI enhancement maps had higher accuracy 
by using more information to diagnose breast cancer. The 
high values demonstrate that 3D CNN in breast cancer 
MR imaging can be used for the detection of breast can-
cer and reduce manual feature extraction.

Liu et al. [30] used CNN to analyze and detect breast 
cancer on T1 DCE-MRI images from 438 patients, 131 
from I-SPY clinical trials and 307 from Columbia Univer-
sity. Segmentation was performed through an automated 
process involving fuzzy C-method after seed points 
were manually indicated. This study included analysis of 
commonly excluded image features such as background 
parenchymal enhancement, slice images of breast MRI, 
and axilla/axillary lymph node involvement. The meth-
ods also minimized annotations done at pixel level, to 
maximize automation of visual interpretation. These 
objectives increased efficiency, decreased subjective bias, 
and allowed for complete evaluation of the whole image. 
Obtaining images with multiple timepoints from multi-
ple institutions made the algorithm more generalizable. 
The CNN model achieved AUC of 0.92, accuracy of 0.94, 
sensitivity of 0.74, and specificity of 0.95.

Marrone et al. [31] used CNN to evaluate 42 malignant 
and 25 benign lesions in 42 women. ROIs were obtained 
by an experienced radiologist, and manual segmentation 
was performed. Accuracy of up to 0.76 was achieved. 
AUC as high as 0.76 was seen on pre-trained AlexNet 
versus 0.73 on fine-tuning of pre-trained AlexNet where 
the last trained layers were replaced by untrained layers. 
The latter method could allow reduced number of train-
ing images needed. The training from scratch AlexNet 
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model is accomplished when AlexNet pre-trained on 
the ImageNet database is used to extract a feature vector 
from the last internal CNN layer, and a new supervised 
training is employed, which yielded the lowest AUC of 
0.68 and accuracy of 0.55.

Rasti et al. [32] analyzed DCE-MRI subtraction images 
from MRI studies (N = 112) using a multi-ensemble CNN 
(ME-CNN) functioning as a CAD system to distinguish 
benign from malignant masses, producing 0.96 accu-
racy with their method. The ME-CNN is a modular and 
image-based ensemble, which can stochastically parti-
tion the high-dimensional image space through simul-
taneous and competitive learning of its modules. It also 
has the advantages of fast execution time in both train-
ing and testing and a compact structure with a small 
number of free parameters. Among several promising 
directions, one could extend the ME-CNN approach to 
the pre-processing stage, by combining ME-CNN with 
recent advances in fully autonomous CNNs for semantic 
segmentation.

Truhn et  al. [33] used T2-weighted images with one 
pre-contrast and four post-contrast DCE images in 447 
patients with 1294 enhancing lesions (787 malignant and 
507 benign) manually segmented by a breast radiologist. 
Deep learning with CNN demonstrated an AUC of 0.88 
which was inferior to prospective interpretation by one 
of the three breast radiologists (7–25 years of experience) 
reading cases in equal proportion (0.98). When only half 
of the dataset was used for training (n = 647), the AUC 
was 0.83. The authors speculate that with increased train-
ing on a greater number of cases that their model could 
improve its performance.

Wu et  al. [34] trained a CNN model to analyze and 
detect lesions from DCE T1-weighted images from 130 
patients, 71 of which had malignant lesions and 59 had 
benign tumors. Fuzzy C-means clustering-based algo-
rithm automatically segmented 3D tumor volumes from 
DCE images after rectangular region-of-interest were 
placed by an expert radiologist. An objective of the study 
was to demonstrate that single-sequence MRI at multi-
ple timepoints provides sufficient information for CNN 
models to accurately classify lesions.

Yurtakkal et al. [35] utilized DCE images of 98 benign 
and 102 malignant lesions, producing 0.98 accuracy, 1.00 
sensitivity, and 0.96 specificity. The multi-layer CNN 
architecture utilized consisted of six groups of convolu-
tional, batch normalization, rectified linear activation 
function layers, and five max-pooling followed by one 
dropout layer, one fully connected layer, and one softmax 
layer.

Zheng et  al. [36] used a dense convolutional long 
short-term memory (DC-LSTM) on a dataset of lesions 
obtained through a university hospital (N = 72). The 

method was inspired by DenseNet and built on convo-
lutional LSTM. It first uses a three-layer convolutional 
LSTM to encode DCE-MRI as sequential data and 
extract time-intensity information then adds a simplified 
dense block to reduce the amount of information being 
processed and improve feature reuse. This lowered the 
variance and improved accuracy in the results. Compared 
to a ResNet-50 model trained only on the main task, the 
combined model of DC-LSTM + ResNet improved the 
accuracy from 0.625 to 0.847 on the same dataset. Addi-
tionally, the authors proposed a latent attributes method 
to efficiently use the information in diagnostic reports 
and accelerate the convergence of the network.

Jiejie Zhou et al. [37] evaluated 133 lesions (91 malig-
nant and 62 benign) using ResNET50, which is similar 
to ResNET18 used by Truhn et  al. [33] and Haarburger 
et  al. [26]. Their investigation demonstrated that deep 
learning produced higher accuracy compared to ROI-
based and radiomics-based models in distinguishing 
between benign and malignant lesions. They compared 
the metrics resulting from using five different bound-
ing boxes. They found that using the tumor alone and 
smaller bounding boxes yielded the highest AUC of 
0.97–0.99. They also found that the inclusion of a small 
amount of peritumoral tissue improved accuracy com-
pared to smaller boxes that did not include peritumoral 
tissue (tumor alone boxes) or larger input boxes (that 
include tissue more remote from peritumoral tissue), 
with accuracy of 0.91 in the testing dataset. The tumor 
microenvironment influences tumor growth, and the 
tumor itself can alter its microenvironment to become 
more supportive of tumor growth. Therefore, the imme-
diate peritumoral tissue, which would include the tumor 
microenvironment, was important in guiding the CNN 
to accurately differentiate between benign and malig-
nant tumors. This dynamic peritumoral ecosystem can be 
influenced by the tumor directing heterogeneous cells to 
aggregate and promote angiogenesis, chronic inflamma-
tion, tumor growth, and invasion. Recognizing features 
displayed by biomarkers of the tumor microenviron-
ment may help to identify and grade the aggressiveness 
of a lesion. This complex interaction between the tumor 
and its microenvironment may potentially be a predictor 
of outcomes as well and should be included in DL mod-
els that require segmentation. In DL models using whole 
images without segmentation of any sort, the peritumoral 
tissue would already be included, which would preclude 
the need for precise bounding boxes.

Juan Zhou et al. [38] used 3D deep learning models to 
classify and localize malignancy from cases (N = 1537) 
of MRIs. The deep 3D densely connected networks were 
utilized under image-level supervision (weakly super-
vised). Since 3D weakly supervised approach was not 
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well studied compared to 2D methods, the purpose of 
this study was to develop a 3D deep learning model that 
could identify malignant cancer from benign lesions and 
could localize the cancer. The model configurations of 
global average pooling (GAP) and global max-pooling 
(GMP) that were used both achieved over 0.80 accu-
racy with AUC of 0.856 (GMP) and 0.858 (GAP) which 
demonstrated the effectiveness of the 3D DenseNet deep 
learning method in MRI scans to diagnose breast cancer. 
The model ensemble achieved AUC of 0.859.

Summary of lessons learned
Most studies were single-center studies, but they came 
from around the world, with the majority coming from 
the US, Asia, and Europe. All studies except one  [33]  
were retrospective studies. The sample size of each 
study ranged from 42 to 690 patients, generally small for 
DL analysis. Sample sizes for patients with benign and 
malignant lesions were comparable and were not skewed 
toward either normal or malignant lesions, suggesting 
that these datasets were not from high-risk screening 
patients because high-risk screening dataset would have 
consisted of very low (i.e., typically < 5%) positive cases.

Image types
Most studies used private datasets as their image source. 
ISPY-1 data were the only public dataset noted (https://​
wiki.​cance​rimag​ingar​chive.​net/​pages/​viewp​age.​action?​
pageId=​20643​859). Most studies involved DCE data 
acquisition, but most analysis include only a single post-
contrast MRI. For those that used multiple post-contrast 
MRI dynamics, most fed each dynamic into each separate 
independent channel, which does not optimally make use 
of the relationships between imaging dynamics. Some 
studies used subtraction of post- and pre-contrast or 
signal enhancement ratio (SER) [24, 32, 35]. Three stud-
ies utilized MIP DCE images to minimize computation 
cost [13, 24, 25]. However, collapsing images by MIP has 
drawbacks (i.e., collapse enhanced vascular structures 
into a single plane may be mistaken as cancer). There 
were only  five  studies  [23, 26, 28, 33, 36] that utilized 
multiparametric data types (i.e., DCE, T2-weighted, 
and DWI). Although combining multiple types of MRIs 
should improve performance, this has not been conclu-
sively demonstrated in practice.

Types of DL architectures
RetinaNet and KFLi are optimized for object detec-
tion, while VGGNet, InceptionResNet, and AlexNet 
are designed for image classification (see review [16, 17, 
39]). LSTM is used for time-series modeling. DenseNet, 
on the other hand, can be used for a wide range of tasks, 
including image classification, object detection, and 

semantic segmentation. Ensemble methods, which com-
bine multiple models, are useful for boosting the overall 
performance of a system. U-Net and R-Net are special-
ized deep learning models for semantic segmentation 
tasks in medical image analysis. U-Net uses an encoder–
decoder architecture to segment images into multiple 
classes, while R-Net is a residual network that improves 
the accuracy and efficiency of the segmentation task.

The most used algorithm is CNN or CNN-based. There 
is no consensus that certain algorithms are better than 
others. Given the fact that different algorithms were 
tested on different datasets, it is not possible to conclude 
that a particular DL architecture performs better than 
others. Careful comparison of multiple algorithms on the 
same datasets is needed. Thus, we only discussed poten-
tial advantages and disadvantages of each DL architec-
ture. Performance indices could be misleading.

Although each model has its own unique architecture 
and design principles, most of the above-mentioned 
methods utilized convolutional layers, pooling layers, 
activation functions, and regularization techniques (such 
as dropout and batch normalization) for model optimi-
zation. Additionally, the use of pre-trained models and 
transfer learning has become increasingly popular, allow-
ing leverage of knowledge learned from large datasets 
such as ImageNet to improve the performance of their 
models on smaller, specialized datasets. However, the lit-
erature on transfer learning in breast cancer MRI detec-
tion is limited. A relatively new deep learning method 
known as transformer has found exciting applications in 
medical imaging [40, 41].

Ground truths
Ground truths were either based on pathology (i.e., 
benign versus malignant cancer), radiology reports, 
radiologist annotation (ROI contoured on images), or 
a bounding box, with reference to pathology or clinical 
follow-up (i.e., absence of a positive clinical diagnosis). 
While the gold standard is pathology, imaging or clini-
cal follow-up without adverse change over a prescribed 
period has been used as empiric evidence of non-malig-
nancy. This is an acceptable form of ground truth.

Heatmaps
Only four out of 18 studies provided heatmaps of the 
regions that the DL algorithms consider important. Heat-
maps enable data to be presented visually in color show-
ing whether the area of activity makes sense anatomically 
or if it is artifactual (i.e., biopsy clip, motion artifact, or 
outside of the breast). Heatmaps are important for inter-
pretability and explainability of DL outputs.

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=20643859
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=20643859
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=20643859
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Performance
All studies include some performance indices, and most 
include AUC, accuracy, sensitivity, and specificity. AUC 
ranged from 0.5 to 1.0, with the majority around 0.8–0.9. 
Other metrics also varied over a wide range. DL train-
ing methods varied, and they included leave-one-out 
method, hold-out method, and splitting the dataset (such 
as 80%/20% training/testing) with cross validation. Most 
studies utilized five- or tenfold cross validation for per-
formance evaluation but some used a single hold-out 
method, and some did not include cross validation. Cross 
validation is important to avoid unintentional skewing of 
data due to partition for training and testing. Different 
training methods could affect performance. Interpreta-
tion of these metrics needs to be made with caution as 
there could be study reporting bias, small sample size, 
and overfitting, among others. High-performance indices 
of the DL algorithm performance are necessary for adop-
tion in clinical use. However, good performance indices 
alone are not sufficient. Other measures such as heat-
maps and experience to gain trust are needed for wide-
spread clinical adoption of DL algorithms.

DL detection of axillary lymph node involvement
Accurate assessment of the axillary lymph node involve-
ment  in breast cancer patients is also essential for 
prognosis and treatment planning [42, 43]. Current radi-
ological staging of nodal  metastasis  has poor accuracy. 
DL detection of lymph node involvement is challeng-
ing because of their small sizes and difficulty in getting 
ground truths. Only a few studies have reported the use 
of DL to detect lymph node involvement [44–46].

Challenges for DL to achieve routine clinical applications
Although deep learning is a promising tool in the diagno-
sis of breast cancer, there are several challenges that need 
to be addressed before routine clinical applications can 
be broadly realized.

Data availability: One of the major challenges in medi-
cal image diagnosis (and breast cancer MRI in particular) 
is the availability of large, diverse, and well-annotated 
datasets. Deep learning models require a large amount of 
high-quality data to learn from, but, in many cases, medi-
cal datasets are small and imbalanced. In medical image 
diagnosis, it is important to have high-quality annota-
tions of images, which can be time-consuming and costly 
to obtain. Annotating medical images requires special-
ized expertise, and there may be inconsistencies between 
different experts. This can lead to challenges in building 
accurate and generalizable models. Medical image data-
sets can lack diversity, which can lead to biased models. 
For example, a model trained on images with inadequate 
representation of racial or ethnicity subgroups may 

not be broadly generalizable. Private medical datasets 
obtained from one institution could be non-representa-
tive of certain racial or ethnic subgroups and, therefore, 
may not be generalizable. Publicly available data are 
unfortunately limited, one of which can be found on can-
cerimagingarchive.net. Collaborative learning facilitating 
training of DL models by sharing data without breach-
ing privacy can be accomplished with federated learning 
[47].

Interpretability, explainability, and generalizability [48]: 
Deep learning models are often seen as “black boxes” 
that can be difficult to interpret. This is especially prob-
lematic in medical image diagnosis, where it is impor-
tant to understand why a particular diagnosis is made. 
Recent research has focused on developing methods to 
explain the decision-making process of deep learning 
models, such as using attention mechanisms or gener-
ating heatmaps to highlight relevant regions in the MRI 
image. While efforts have been made to develop methods 
to explain the decision-making process of deep learning 
models, the explainability of these models is still limited 
[49]. This can make it difficult for clinicians to under-
stand the model’s decision and to trust the model. Deep 
learning models may perform well on the datasets on 
which they were trained but may not generalize well to 
new datasets or to patients with different characteristics. 
This can lead to challenges in deploying the model in a 
real-world setting.

Ethical concerns: Deep learning models can be used 
to make life-or-death decisions, such as the diagnosis 
of cancer. This raises ethical concerns about the safety, 
responsibility, privacy, fairness, and transparency of these 
models [50]. There are also social implications (including 
but not limited to equity) of using artificial intelligence 
in health care. This needs to be addressed as we develop 
more and more powerful DL algorithms.

Perspectives and conclusions
Artificial intelligence has the potential to revolutionize 
breast cancer screening and diagnosis, helping radiolo-
gists to be more efficient and more accurate, ultimately 
leading to better patient outcomes. It can also help to 
reduce the need for biopsy or unnecessary testing and 
treatment. However, some challenges exist that preclude 
broad deployment in clinical practice to date. There need 
to be large, diverse, and well-annotated images that are 
readily available for research. Deep learning results need 
to be more accurate, interpretable, explainable, and gen-
eralizable. A future research direction includes incor-
poration of other clinical data and risk factors into the 
model, such as age, family history, or genetic mutations, 
to improve diagnostic accuracy and enable personalized 
medicine. Another direction is to assess the impact of 
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deep learning on health outcomes to enable more invest-
ment in hospital administrators and other stakeholders. 
Finally, it is important to address the ethical, legal, and 
social implications of using artificial intelligence.
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